Integración arquitectónica y constructiva de sistemas fotovoltaicos de tecnología de lámina delgada en relación con la disipación térmica y almacenamiento de calor
No Thumbnail Available
Date
2014
Date
Authors
item.contributor.affiliation
Journal Title
Journal ISSN
Volume Title
Publisher
E.T.S. Arquitectura (UPM)
Abstract
Description
Esta tesis doctoral contribuye al análisis y desarrollo de nuevos elementos constructivos que integran sistemas de generación eléctrica a través de células fotovoltaicas (FV); particularmente, basados en tecnología FV de lámina delgada. Para ello se estudia el proceso de la integración arquitectónica de éstos elementos (conocido internacionalmente como “Building Integrated Photovoltaic – BIPV”) mediante diferentes metodologías. Se inicia con el estudio de los elementos fotovoltaicos existentes y continúa con los materiales que conforman actualmente las pieles de los edificios y su posible adaptación a las diferentes tecnologías. Posteriormente, se propone una estrategia de integración de los elementos FV en los materiales constructivos. En ésta se considera la doble función de los elementos BIPV, eléctrica y arquitectónica, y en especial se plantea el estudio de la integración de elementos de disipación térmica y almacenamiento de calor mediante los materiales de cambio de fase (“Phase Change Materials – PCM”), todo esto con el objeto de favorecer el acondicionamiento térmico pasivo a través del elemento BIPV. Para validar dicha estrategia, se desarrolla una metodología experimental que consiste en el diseño y desarrollo de un prototipo denominado elemento BIPV/TF – PCM, así como un método de medida y caracterización en condiciones de laboratorio. Entre los logros alcanzados, destaca la multifuncionalidad de los elementos BIPV, el aprovechamiento de la energía residual del elemento, la reducción de los excedentes térmicos que puedan modificar el balance térmico de la envolvente del edificio, y las mejoras conseguidas en la producción eléctrica de los módulos fotovoltaicos por reducción de temperatura, lo que hará más sostenible la solución BIPV. Finalmente, como resultado del análisis teórico y experimental, esta tesis contribuye significativamente al estudio práctico de la adaptabilidad de los elementos BIPV en el entorno urbano por medio de una metodología que se basa en el desarrollo y puesta en marcha de una herramienta informática, que sirve tanto a ingenieros como arquitectos para verificar la calidad de la integración arquitectónica y calidad eléctrica de los elementos FV, antes, durante y después de la ejecución de un proyecto constructivo. ABSTRACT This Doctoral Thesis contributes to the analysis and development of new building elements that integrate power generation systems using photovoltaic solar cells (PV), particularly based on thin-film PV technology. For this propose, the architectural integration process is studied (concept known as "Building Integrated Photovoltaic - BIPV") by means of different methodologies. It begins with the study of existing PV elements and materials that are currently part of the building skins and the possible adaptation to different technologies. Subsequently, an integration strategy of PV elements in building materials is proposed. Double function of BIPV elements is considered, electrical and architectural, especially the heat dissipation and heat storage elements are studied, particularly the use Phase Change Materials– PCM in order to favor the thermal conditioning of buildings by means of the BIPV elements. For this propose, an experimental methodology is implemented, which consist of the design and develop of a prototype "BIPV/TF- PCM element" and measurement method (indoor laboratory conditions) in order to validate this strategy. Among the most important achievements obtained of this develop and results analysis includes, in particular, the multifunctionality of BIPV elements, the efficient use of the residual energy of the element, reduction of the excess heat that it can change the heat balance of the building envelope and improvements in electricity production of PV modules by reducing the temperature, are some benefits achieved that make the BIPV element will be more sustainable. Finally, as a result of theoretical and experimental analysis, this thesis contributes significantly to the practical study of the adaptability of BIPV elements in the urban environment by means of a novel methodology based on the development and implementation by computer software of a useful tool which serves as both engineers and architects to verify the quality of architectural integration and electrical performance of PV elements before, during, and after execution of a building projects.
Keywords
Arquitectura
Citation
item.page.identifier
https://oa.upm.es/32637/